
3DP PAN EU Webinar

Additive Manufacturing in the EU – Report on the EU **Demonstration 3D Printing** Industry

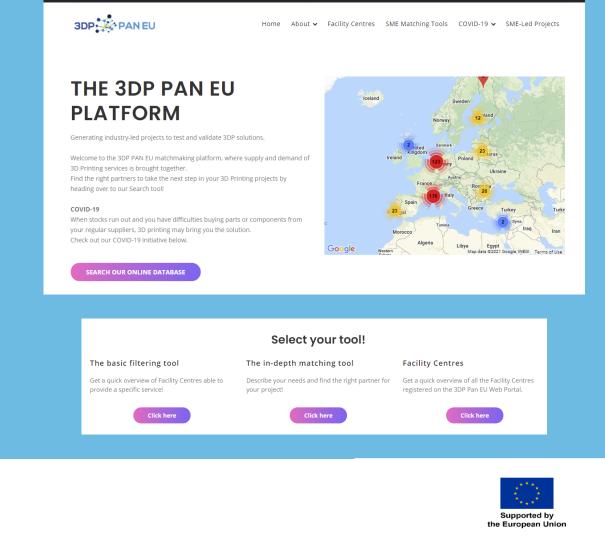
MakerBot: Replice

Programme

10:00	Welcome and Introduction <i>Tim Daniels – Brainport Development</i>
10:05	3DP PAN EU Background Milda Vitkauskaité - CIVITTA
10:15	Key results from the study on Additive Manufacturing in the EU Jean-François Romainville – IDEA Consult
10.45	Expert views on the Additve Manufacturing Industry Christian Wögerer - ProFactor
11.05	3D Printing needs of SMEs Carolina Lavecchia - REJOINT
11:25	Role of international facility centres in the European Additive Manufacturing industry Luca Tomesani – University of Bologna
11:45	Q&A
11:55	Closing remarks and next steps Marshall Hsia – European Commission

3DP PAN EU Background

- European Parliament pilot action
- Goals
 - Fostering awaress, knowledge and uptake of 3D Printing
 - Promoting SME access to high quality AM services
- Core activities
 - Launching and managing the 3dppan.eu online platform
 - Call for SMEs 10 SME led industrial demonstration/validation projects
 - Analysis: EU Market for AM demonstration equipment and services
- Project consortium

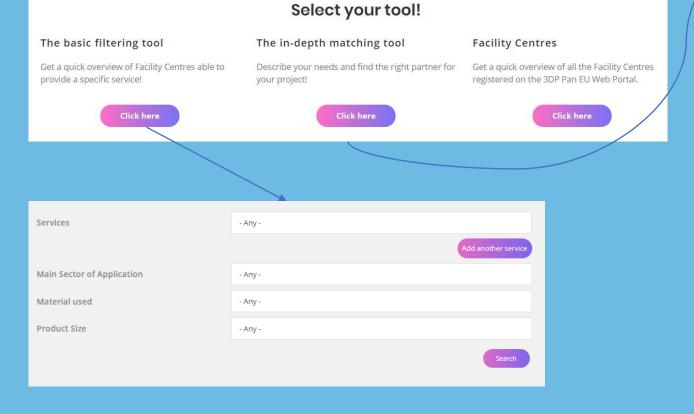


3DP PAN EU Activities

- 3dppan.eu online platform launched March 2020
 - Matchmaking tools designed to bridge supply & demand
- Call for SMEs
 - 10 SME led industrial demonstration projects currently ongoing
- Analysis: EU Market for AM demonstration equipment and services

N EU

• Ongoing, final delivery October 2021

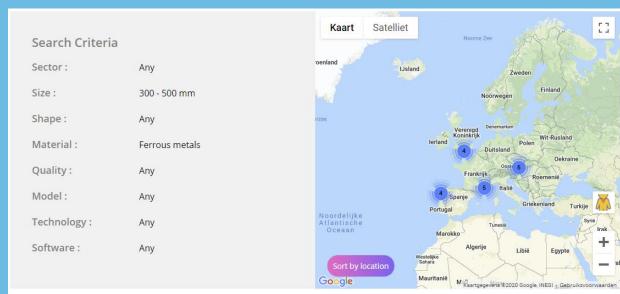

Login A Register a Facility Centre

🖕 +31 40 751 24 24 🛛 info@3dppan.eu

Matching Tools

3DP PAN EU SME Matching Tool

Find the partner(s) you need by providing answers to any (i.e. one, two or all) of the questions below and (when ready) click on 'search', at any time! The more information provided, the more accurate is the match!



-WHICH IS (ARE) THE MATERIAL(S) YOU WISH TO USE?

18 FACILITY CENTRE(S) FOUND IN 9 COUNTRIE(S)

3D Medlab	
Private	
France	
Available filter: 300 - 500 mm, Ferrous metals	

3T Additive Manufacturing Ltd Private United Kingdom Available filter: 300 - 500 mm, Ferrous metals 3T ≥

O oceanz.

Turkije

Irak

53

Any-Shape SA Private Belgium Available filter: 300 - 500 mm, Ferrous metals

3D NEULAE

Oceanz 3D printing Private Netherlands

Available filter: 300 - 500 mm, Ferrous metals

-FACILITY CENTRE-

Facility Centre Name: Oceanz 3D printing Facility Centre Type: Private Facility Centre Region: Gelderland, The Netherlands Address: Maxwellstraat 21, 6716 BX, Ede, Netherlands. Website: www.oceanz.eu

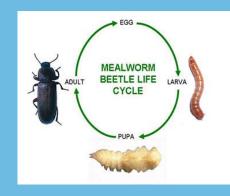
share via: 🚯 Facebook 🕥 Twitter 👘 Linkedin 💿 Email 🙆 PDF

COVID-19 Response Initiative

- Global health crisis negatively impacted EU supply chains
- 3D Printing as a possible solution
- Extension of the scope of 3dppan.eu but limited to the COVID-19 action
- Open to any Facility Centre across the EU (124 registered)
 - Specification related to COVID-19 action within the registration process

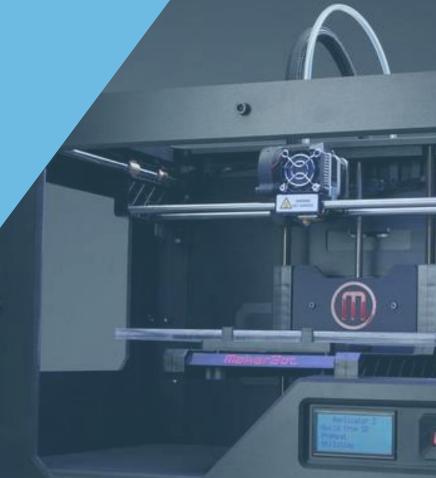
COVID-19

- Are you open for 3D printing production orders by third parties?
- Are you open to receiving emails from interested actors?



SME led industrial projects

- Call for SMEs open April August 2020
- 10 SME-led industrial 3D Printing demonstration/validation projects
 - Interregional consortia 1 SME & (at least) 2 Facility Centres
 - Multiple industrial sectors / application areas represented



EU Market for AM demonstration equiment and services

Jean-François Romainville, IDEA Consult, Expert in Innovation and Industrial Policy

Federico Bley, IDEA Consult, Consultant in Innovation, Competiveness and Sustainability

MakerBot Replice

HIGHLIGH

Today's presentation

• Goals:

- 1. Presentation preliminary findings (supply's side in particular)
 - → Draft report available on 3DP Pan EU
- 2. Gather comments/remarks
 - → Final report made available in October 2021
- Structure:
 - Demand Side major trends
 - Supply Side analysis
 - Preliminary conclusions

Approach of the study

Demand and Supply of 3D Printing Products (incl. TRL8+ and industrially deployed activities) *

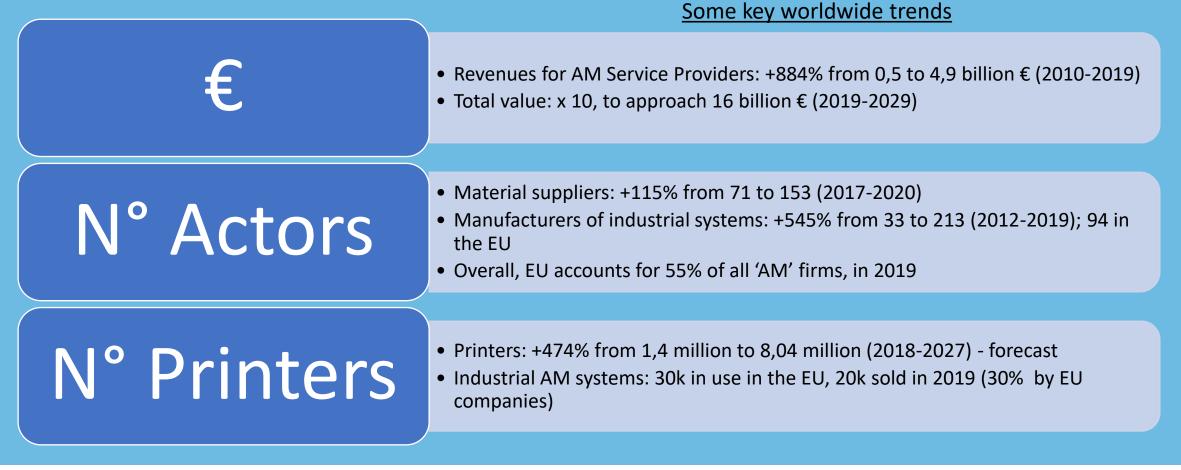
> A focus on Demonstrationrelated (TRL 5-8) 3D Printing Activities – Demand and Supply Main Data Source: 3DP Pan EU data

Key Trends and Policy Recommendations

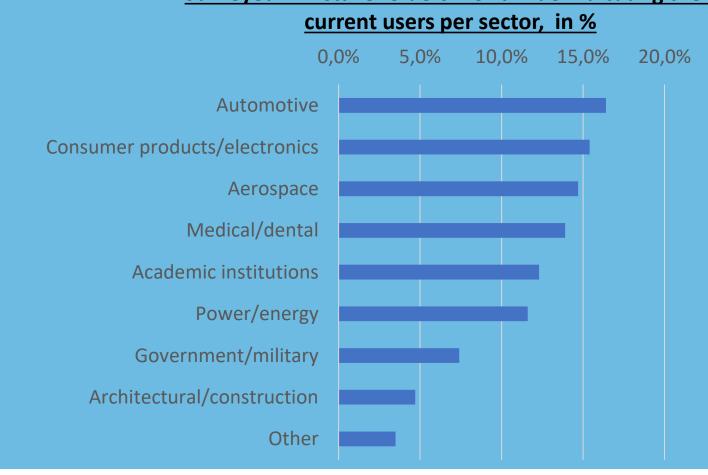
*Data Sources: Extensive Desk Research: AMFG (2020), EASME (2020), EASME (2017), Ernst & Young (2019), AM-motion, (2018), Wohlers Report 2020, SAM (2021), 3DP Pan EU Data

Zoom on 3DP Pan EU Data

- **380 Facility Centres** (i.e. public or private organisations providing demonstration services (and associated equip.) to SMEs);
- **1.300 pieces of Equipment** listed and described;
- 1.087 services listed and described;
- 3.500 searches between March October 2020, using available matching tools (i.e. connecting demand and supply of demonstration services).

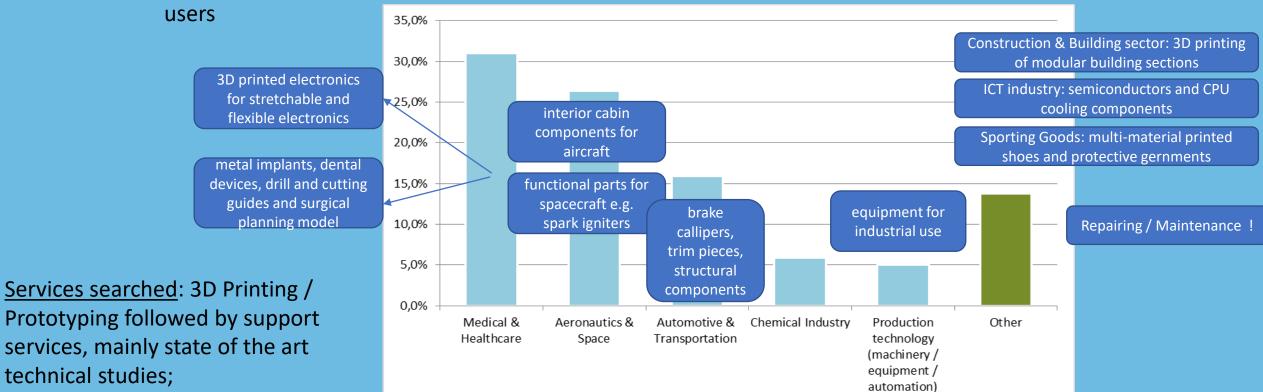

Demand Side Analysis

AM-based solutions increasingly deployed and further growth expected...*



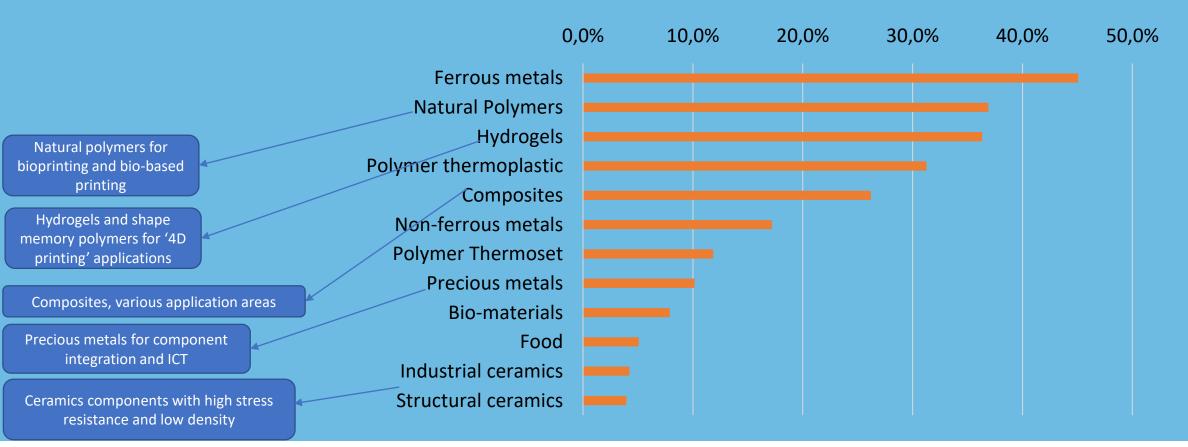
*Data Sources: Extensive Desk Research: AMFG (2020), EASME (2020), EASME (2017), Ernst & Young (2019), AM-motion, (2018), Wohlers Report 2020, SAM (2021), 3DP Pan EU Data

....With a particularly strong dynamism in <u>some</u> <u>segments...</u>


Source: Wohlers Associates, Inc., 2020

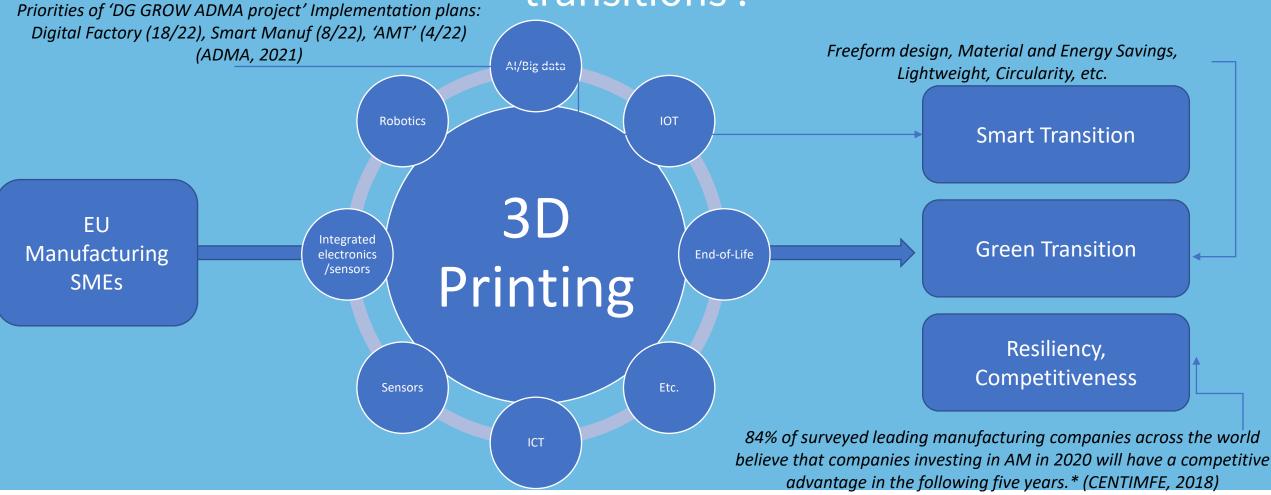
...With a particularly strong dynamism in some segments...

Top 5 sector searches on the 3DP Pan EU Platform, per sector (% of total searches): a view on upcoming

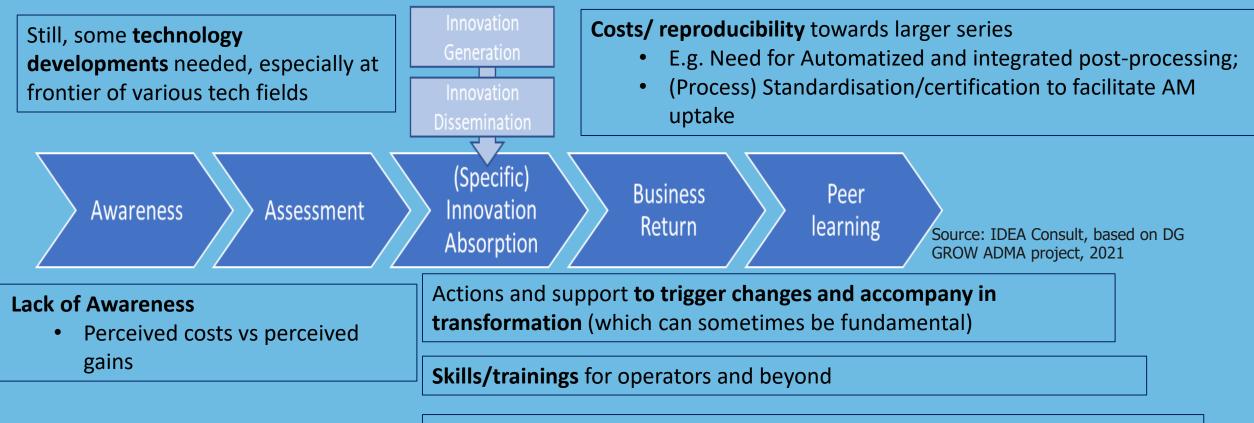

ANEU

...With a particularly strong dynamism in some <u>segments</u>...

Searches made in % of material-specific searches



...relying upon generic advantages of AM: <u>AM as 'factory-floor</u> <u>connector' between data and productions</u>, instrumental for key transitions !



But major barriers remain for further deployment, (especially among downstream SMEs) !

'Structural' facilitated access to **pan-EU** demonstration service and equipment

Illustrative list of promising generic innovation areas

Sustainability/Recyclability	 End of life considerations for composite materials to be achieved through 1) Material research; 2) Design improvements ; 3) Recycling capabilities Lighter components → Material research
Large Parts	 On-site production for construction to be achieved through further research and demo cases Printing of large parts with composite materials, complex geometrics
Large Series	 Automated and integrated post processing Large volumes production for commercial use. Aspects to be improved are 1) Speed; 2) Cost; 3) AM integration
Industry 4.0	 AM and Robotics → Digitalisation of manufacturing AM and embedded electronics/sensors → research, conceive of new applications
Higher quality materials (and parts)	 Hydrogels as "smart materials" → research + demonstration cases 4D printing for wearable electronics → raise awareness/interest in key sectors Ceramics components with high stress resistance and low density → demonstration cases Precious metals for component integration and ICT → research

slido

Do you agree with these identified trends? **Do you see other promising AM-based 'areas'** (specific combinations of technologies and/or of application areas materials and materials) that will be relevant/highly demanded in the coming years?

Supply Side Analysis

Equipment availability – materials and technology

Equipment registered on 3DP PAN EU platform by materials

- Strong in metal and plastics AM
- Hydrogels as promising material!
- Precious metals for ICT will gain importance
- Composites -Ceramics

	Italy	Spain	Belgium	France	Germany	The Netherlands	EU Total
Polymer	157	89	37	34	16	57	529
thermoplastic	(43,3%)	(57,4%)	(40,2%)	(42,5%)	(20%)	(50%)	(45,6%)
Non-ferrous metals	56	40	39	32	9	16	263
	(15,4%)	(25,8%)	(42,4%)	(40%)	(11,3%)	(14%)	(22,7%)
Ferrous metals	46	27	32	38	28	14	244
	(12,7%)	(17,4%)	(34,8%)	(47,5%)	(35%)	(12,3%)	(22,1%)
Polymer Thermoset	19	18	26	24	5	19	124
	(5,2%)	(11,6%)	(28,3%)	(30%)	(6,3%)	(16,7%)	(10,7%)
Bio-materials	60	8	3	5	10	1	115
	(16,5%)	(5,2%)	(3,3%)	(6,3%)	(12,5%)	(0,9%)	(9,9%)
Composites	55	18	13	0	2	3	115
	(15,2%)	(11,6%)	(14,1%)		(2,5%)	(2,6%)	(9,9%)
Industrial ceramics	48	18	7	4	4	14	103
	(13,2%)	(11,6%)	(7,6%)	(5%)	(5%)	(12,3%)	(8,9%)
Structural ceramics	29	5	8	1	11	0	65
	(8%)	(3,2%)	(8,7%)	(1,3%)	(13,8%)		(5,6%)
Natural Polymers	25	11	9	0	4	2	58
	(6,9%)	(7,1%)	(9,8%)		(5%)	(1,8%)	(5%)
Food	20	0	0	0	0	0	20
	(5,5%)						(1,7%)
Precious metals	3	3	3	0	0	2	16
	(0,8%)	(1,9%)	(3,3%)			(1,8%)	(1,4%)
Hydrogels	2	0	0	0	0	0	2
	(0,6%)						(0,2%)

Equipment availability – materials and technology

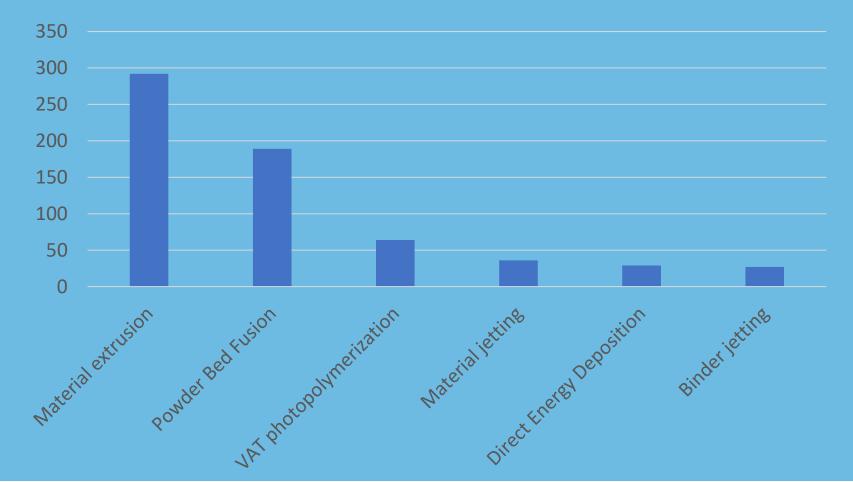
Materials use per sector by facility centres in % of total FCs

Globally similar trends per sector

3DPt

PANEU

	Bio-	Composites	Ferrous	Hydrogels	Industrial	Natural	Non-	Polymer	Polymer	Precious	Structural	Other
	materials		metals		ceramics	Polymers	ferrous	thermoplas	Thermoset	metals	ceramics	
							metals	tic				
Aeronautics & Space	1,8%	3,4%	18,4%	0,1%	1,0%	4,0%	20,7%	17,3%	14,8%	8,0%	2,7%	5,6%
Automotive & Transportation												
(excluding ships and boats)	4,9%	11,0%	17,5%	0,2%	1,9%	2,0%	17,3%	17,7%	14,0%	0,9%	0,7%	7,2%
Chemical Industry	5,7%	5,3%	20,1%	1,3%	9,1%	2,2%	21,1%	17,0%	8,2%	0,0%	7,2%	0,0%
Construction & Building sector	3,6%	7,3%	5,1%	0,0%	9,3%	9,7%	13,6%	17,2%	16,5%	0,1%	3,4%	13,3%
Consumer Goods & Products												
(excluding sporting goods, textile												
and furniture)	3,6%	17,9%	14,8%	0,3%	0,9%	3,8%	15,0%	22,2%	11,9%	0,5%	0,0%	5,2%
Energy	2,8%	3,8%	22,6%	0,0%	6,8%	3,1%	23,1%	11,1%	8,0%	0,7%	3,1%	7,1%
Environment	21,4%	14,3%	0,0%	3,6%	0,0%	17,9%	10,7%	10,7%	3,6%	0,0%	0,0%	14,3%
Food	0,1%	0,0%	20,0%	0,1%	0,0%	0,0%	19,9%	20,0%	20,0%	19,9%	0,0%	0,0%
Furniture	5,1%	14,3%	4,1%	0,0%	1,0%	9,2%	6,1%	20,4%	5,1%	0,0%	1,0%	18,4%
ICT industry (including												
electronics, computer and												
communication related products)	11,6%	11,6%	7,1%	0,0%	1,6%	3,9%	6,1%	19,7%	18,7%	1,0%	0,8%	14,0%
Measurement	4,5%	1,1%	3,4%	2,2%	43,8%	3,4%	2,2%	6,7%	4,5%	2,2%	5,6%	16,9%
Medical & Healthcare	2,7%	3,4%	19,6%	0,3%	0,9%	1,9%	19,8%	18,7%	13,7%	11,4%	1,2%	2,4%
Production technology												
(machinery / equipment /												
automation)	2,9%	4,1%	21,2%	0,0%	2,8%	0,8%	19,2%	17,6%	14,2%	8,2%	3,1%	3,3%
Ships and Boats	0,6%	0,8%	0,5%	0,0%	0,5%	19,0%	18,5%	19,3%	18,8%	0,3%	0,0%	19,7%
Sporting Goods	0,5%	19,1%	18,1%	0,0%	0,0%	0,5%	12,6%	20,0%	16,3%	0,0%	1,9%	0,5%
Textile & Fashion	13,6%	16,1%	1,6%	0,0%	1,9%	4,7%	2,8%	19,0%	28,5%	0,0%	0,6%	11,1%



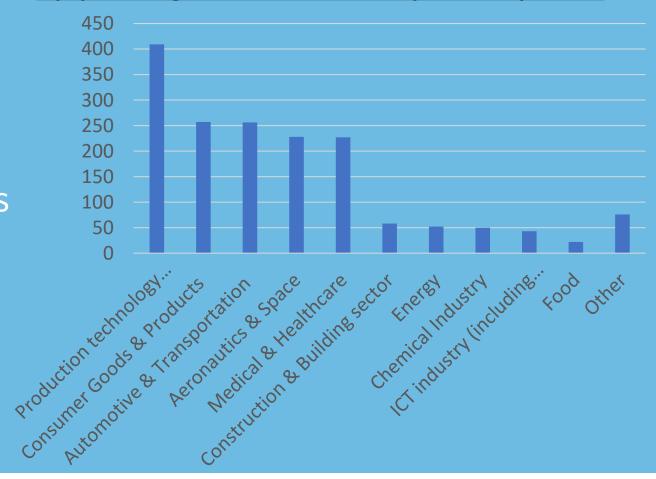
Equipment availability – materials and technology

Equipment registered per AM technology

 Overall strong in metal + plastics technologies

• DED + Binder jetting few equipment on platform

Equipment registered on 3DP PAN EU platform by AM technology



Equipment availability – targeted application areas

Number of equipment by application sector:

- 60% in NL for Production Technology
- 74% in BE for Consumer Goods
- 51% in BE for Medical & Healthcare
- 39% in ES for Aeronautics & Space

Equipment registered on 3DP PAN EU platform by sectors

Equipment capabilities – targeted application areas

Number of equipment by application sector:

3DP

ANEU

Application sector	Italy	Spain	Belgium	France	Germany	The Netherlands	EU Total
Production technology (machinery / equipment / automation)	199 (54,8%)	40 (25,8%)	4 (4,3%)	19 (23,8%)	21 (26,3%)	69 (60,5%)	409 (35,3%)
Consumer Goods & Products	84 (23,1%)	35 (22,6%)	68 (73,9%)	2 (2,5%)	5 (6,3%)	2 (1,8%)	257 (22,2%)
Automotive & Transportation	56 (15,4%)	47 (30,3%)	16 (17,4%)	13 (16,3%)	17 (21,3%)	19 (16,7%)	256 (22,1%)
Aeronautics & Space	67 (18,5%)	61 (39,4%)	12 (13%)	21 (26,3%)	2 (2,5%)	20 (17,5%)	228 (19,7%)
Medical & Healthcare	94 (25,9%)	14 (9%)	47 (51,1%)	18 (22,5%)	14 (17,5%)	16 (14%)	227 (19,6%)
Construction & Building sector	6 (1,7%)	12 (7,7%)	0	0	0	3 (2,6%)	58 (5%)
Energy	19 (5,2%)	14 (9%)	3 (3,3%)	16 (20%)	0	0	52 (4,5%)
Chemical Industry	0	7 (4,5%)	24 (26,1%)	0	6 (7,5%)	5 (4,4%)	50 (4,3%)
ICT industry (including electronics, computer and	8	13	1	3	3	2	43
communication related products)	(2,2%)	(8,4%)	(1,1%)	(3,8%)	(3,8%)	(1,8%)	(3,7%)
Food	21 (5,8%)	0	0	0	0	1 (0,9%)	22 (1,9%)
Other	9 (2,5%)	21 (13,5%)	9 (9,8%)	7 (8,8%)	13 (16,3%)	5 (4,4%)	76 (6,6%)

Source: IDEA Consult, based on 3DP PAN EU Platform data, 2021

CONSULT thinking ahead

Equipment capabilities – size

Equipment share by manufactured size possible:

 Relatively many equipment for large parts in PL (furniture) and NL (construction)

• FR and DE, less equipment for >500 mm

Component size capabilities of facility centres in EU

Equipment capabilities – size

Component size capabilities of facility centres in EU

3DP

Component size	Italy	Spain	Belgium	France	Germany	The Netherlands	EU Total	EU facility centres
0 - 300 mm	87	96	37	53	34	64	463	88
300 - 500 mm	34	19	33	9	13	3	146	54
500 - 1000 mm	19	3				0	33	25
1000 - 2500 mm	7	6	5		1	1	29	20
>2500 mm	10	5	5			16	97	13

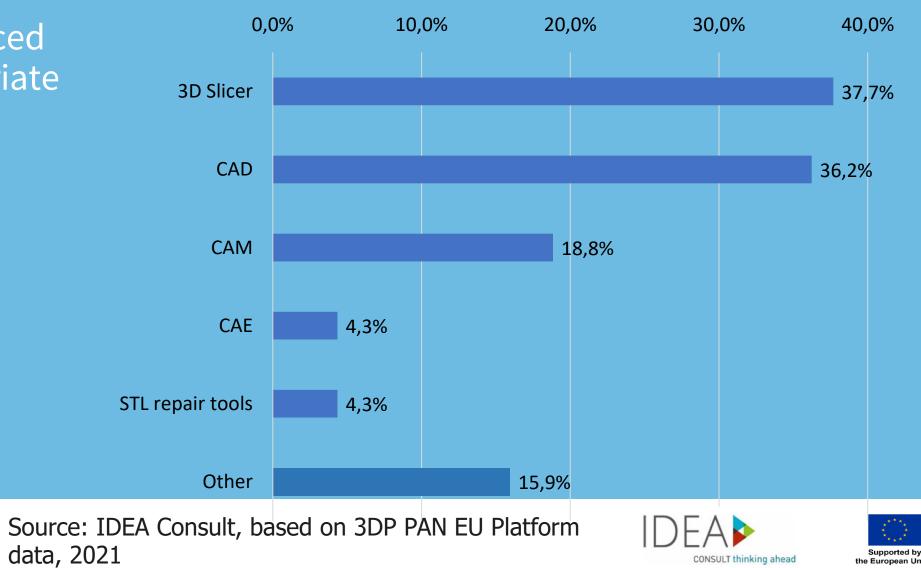
Brands and models

European OEM in top 5 of most popular brands in registered facility centres

3DP

120 100 80 60 40 20 0 HPUSEUN UNE EUN US US US TOTAL SOFTAL STRATA PRUSA SIN ABB LASE FOR NAKORED UN ABB USE TO THE STRATE STRATES OF THE STRATES OF

Top 15 brands of AM equipment registered on the 3DP PAN EU platform


Software

3DP

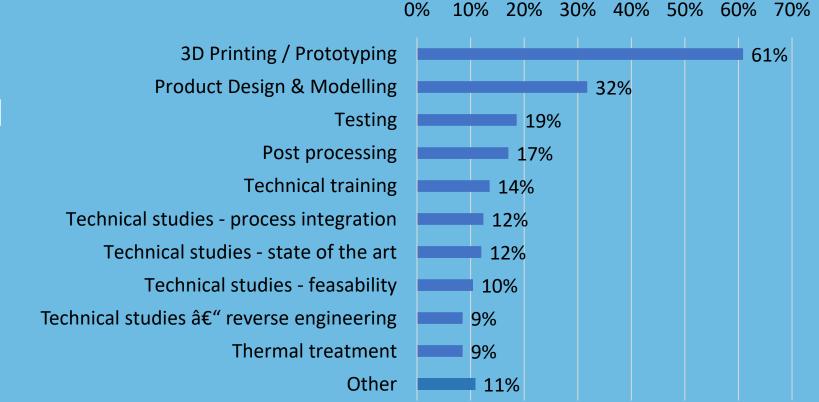
Software for advanced materials – appropriate coverage?

ANEU

Main software used by facility centres

CONSULT thinking ahead

the European Unior

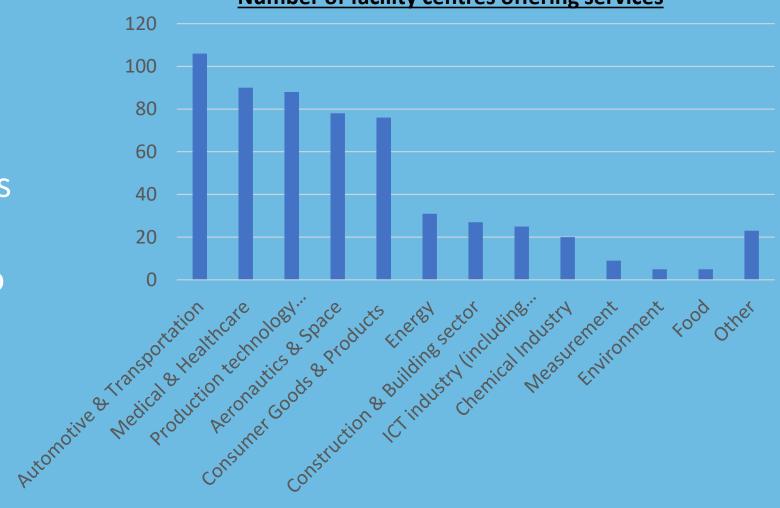

Services

3DP

• Technical training remains crucial

 Technical studies are highly demanded – and offered

Top 10 services offered by facility centres



Services

Facility centres offering services per sector:

- ES most active in automotive + aeronautics
- DE least active in aeronautics compared to other top 5 countries

Number of facility centres offering services

slido

Have you experienced/are you aware of some SMEs needs for demonstration services that are not well covered by Facility Centres from your regions? If so, can you elaborate on these needs (materials, technologies, software, services, etc.)?

Preliminary Generic Conclusions and paths for improvments

	 Basic/Standard needs': growingly-adequate 'national' coverage But emerging, complex needs: need for smooth cross border cooperation and access across 'specialised' FCs
Demonstration	 Working towards proactive and efficient EU coverage:
<u>services</u>	 Continuous and comprehensive monitoring demand evolutions and supply availability
	 Avoiding unnecessary investment duplications (but taking into account local anchorage needs)
	Mass-deployment? Need for AM-related actors further integration and connections across
The overall AM	Mass-deployment? Need for AM-related actors further integration and connections across the whole 'SMEs innovation sequence':
<u>The overall AM</u> <u>ecosystem</u>	
	the whole 'SMEs innovation sequence':
	the whole 'SMEs innovation sequence': •from raising awareness to peer learning; •from innovation generation to innovation absorption
	the whole 'SMEs innovation sequence': • from raising awareness to peer learning;

Thank you!

Jean-François Romainville (IDEA Consult)

Questions?

Jean-francois.romainville@ideaconsult.be

Expert views on the Additve Manufacturing Industry

Dipl. Ing. Christian Wögerer, MAS MSc PROFACTOR GmbH

- Introduction and information on PROFACTOR
- Involvement of PROFACTOR in the project Call for SMEs project
- Reflections on the analysis match between the analysis and what I see from the industrial perspective from your position/role

Our Profile

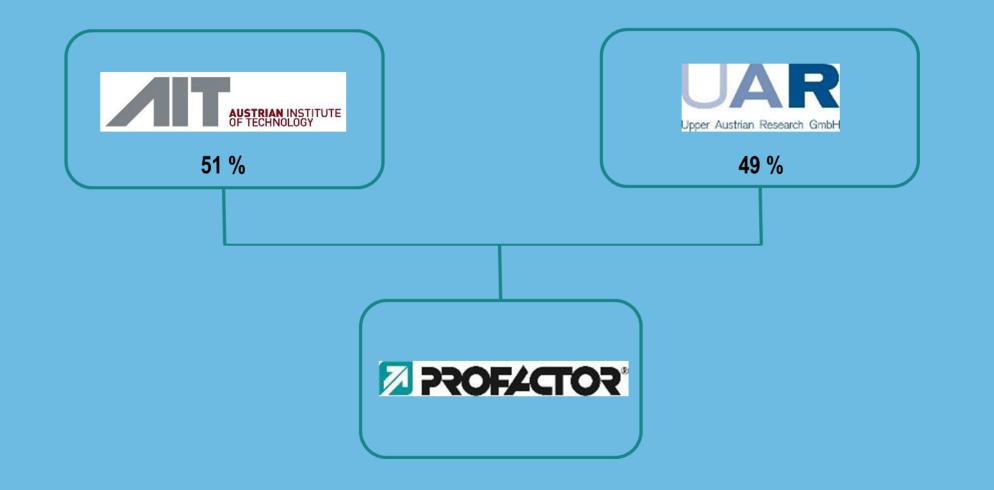
Industrial Assistance Systems

Additive Micro/Nano-Manufacturing

Solutions

Facts and Figures

140 EU projects as Coordinator and as participant


3,0 MILLIONS EURO OPERATING REVENUE IN INDUSTRIAL PROJECTS

7,0 MILLIONS EURO TURNOVER **4,0** MILLIONS EURO OPERATING REVENUE FUNDED PROJECTS

Our Owners

Competitive production systems

Combining human and machine interaction, intelligence and processing power, human expertise and machine power

Partial automation for Mass Customization

Individualized Products

Competitive small lot size production

(nearly) endless freedom of design and material combinations

More (new) functions as competitive advantage Scalability for mass fabrication

3DP

Gripp3D

Lightweight, flexible, smart, and additively manufactured robot gripper

26.11.2020

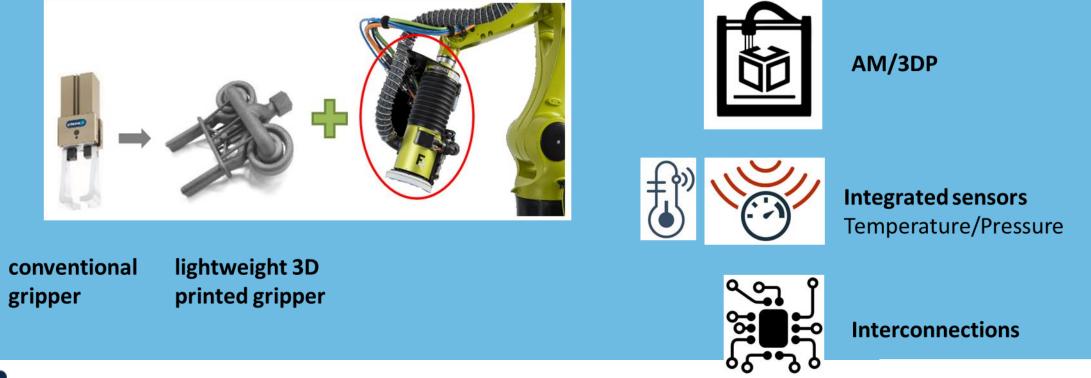
Pavel Kulha Oscar Alonso Ronald Naderer

- **3DP PAN EU** launched a Call for SMEs to test and validate a number of industrial demonstration 3D Printing bases projects in different application fields, making use of the pan-European platform, <u>https://3dppan.eu/call-smes</u>
- **Gripp3D** is the 1st Demo-Case which we have prepared in the frame of Vanguard 3DP DemoCase6 "multi-material inkjet 3D structural electronics"
- <u>https://www.s3vanguardinitiative.eu/</u>
- Project Starts: 01/2021
- Duration: 9 months

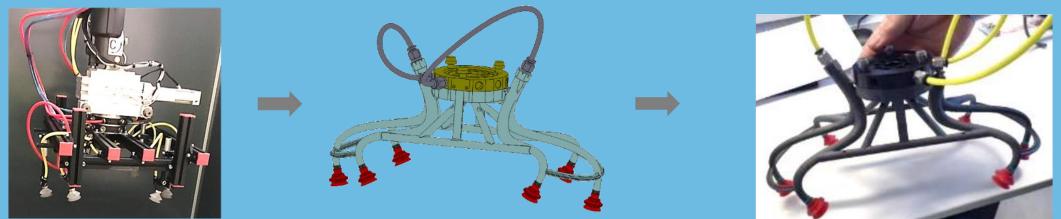
FERROBOTICS perfect feeling

- world leader in the development and sale of flexible, intuitive robotic equipment
- patented Active Compliant Technology ACT establishes every common robot setup with a special ingredient – tactile sense.
- innovative IoT devices establish autonomous system cooperation, they are the pinpointed solutions for sanding, grinding and polishing processes

- applied research company
- research in the field of industrial assistive systems and additive micro/nano manufacturing.
- technological focus is on robotics, machine vision, functional surface and nanostructures
 - Process development enabling 3D printed structural electronics


- private no profit RTO with more than 110 years of valuable experience in industrial innovation
- applied R&D activities in areas advanced materials, advanced manufacturing, renewable energies, storage system, circular economy, sustainability and biotechnology
 - with the mission to accelerate the adoption and development of AM/3DP technologies in EU manufacturing sectors

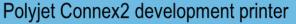
Project Idea


- implementing AM/3DP technologies in fabrication of lightweight, flexible and sensor functionalized flange and gripper.
- The objective is to develop and deploy physical intelligence-based solution for handling operations in robotic applications in the production industry through AM/3DP technologies.

Key tasks - LEITAT

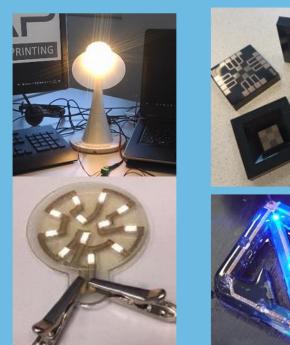
- **Z** Establish strategies and methodologies for effective and efficient handling processes.
- Determine applicable AM/3DP materials and technologies and its characteristics for obtaining benefits.
- Develop design strategies for the optimal gripper design.
- Validate the functionality of the automatic design tool and grippers for testing using 3D printing.

3DP grippers designed in Leitat for grabbing -through vacuum- and manipulating injection molding parts in the production industry.



Key tasks - PROFACTOR

- 7 Developing fabrication technologies based on multi-material inkjet printing
- Research on suitable materials for rigid, flexible parts and conductive tracks 7
- Optimizing printing processes (mainly multi-material) and curing/sintering strategies 7
- Functionalization of flange and gripper, integration of conductive tracks and simple sensors 7
- Direct feeding 0
- Heated tray 0
- Thermal management 0
- IR lamp for drying and Ο sintering
- UV Mercury/LED 0 curing lamps
- Custom software for 0 UV LED controll

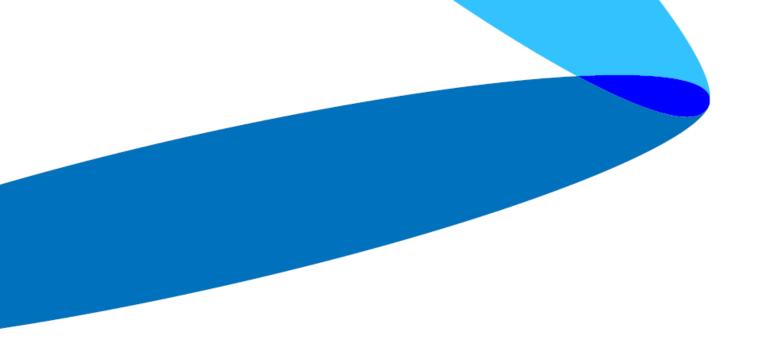

3DP

Fully printed electronic parts embedded in printed robotic arm

IEU

Integration and Validation - FERROBOTICS

- specifically optimized 3D printed grippers that will integrate IoT embedded sensors for sensing capability (proximity, product features, connectivity, etc.)
- more efficient manufacturing processes,
- reduction of time to market
- affordable solution for smart customized robot end-of-arm tools



Reflections on the analysis - match between the analysis and what I see from the industrial perspective from your position/role

- In general, 3d printing was first sold as something that could be done with almost anything.
- The technology developed very quickly to market maturity (different for different technologies).
- The study analyses very well the inventory of 3D printing services and facilities.
- Markets are well mapped
- Future in-depth comprehensive technology roadmaps should be developed

3D PRINTING NEEDS OF SMEs

Lavecchia Carolina Eleonora R&D Director

Sommario

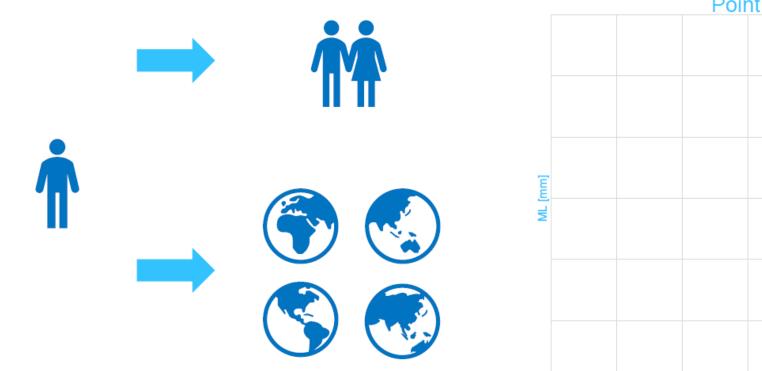
Personalised Medicine 4

- YourKnee 5
- Subject-specific solution 6
- Additive Manufacturing 7
 - EBM workflow 9

AM product development 8

- Lattice structure to enhance osteointegration 11
 - AM development facility centre 12

2 Cop and All r

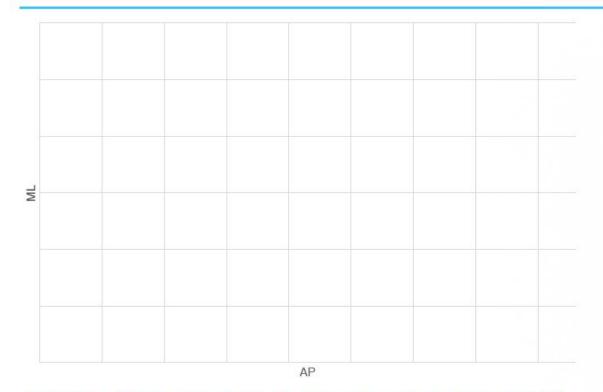

REJOINT

Take your patient's EXPERIENCE to the next level and beyond!

Rejoint is a start-up pioneer in new technologies and surgical approaches in Knee Arthroplasty.

Personalised Medicine

AP [mm]



Personalised Medicine

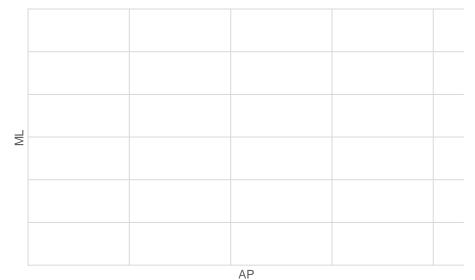
 Copyright®, REJOINT and/or its affiliates. All rights reserved.
 Note/ Fonti:

REJOINT YourKnee

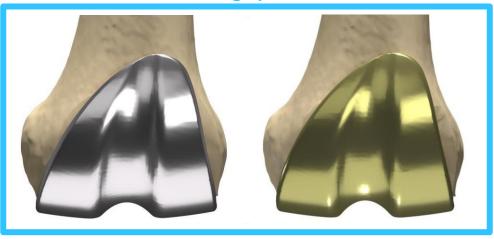
Rejoint offers a variety of sizes to cover anatomical variations across the population.

WE ARE CREATING A NEW WAY TO THINK AT TKA

by developing patient specific solutions for the new generation of patients and e-patients and new tools for surgeons and healthcare providers to improve efficiency and clinical outcomes.


6

REJOINT

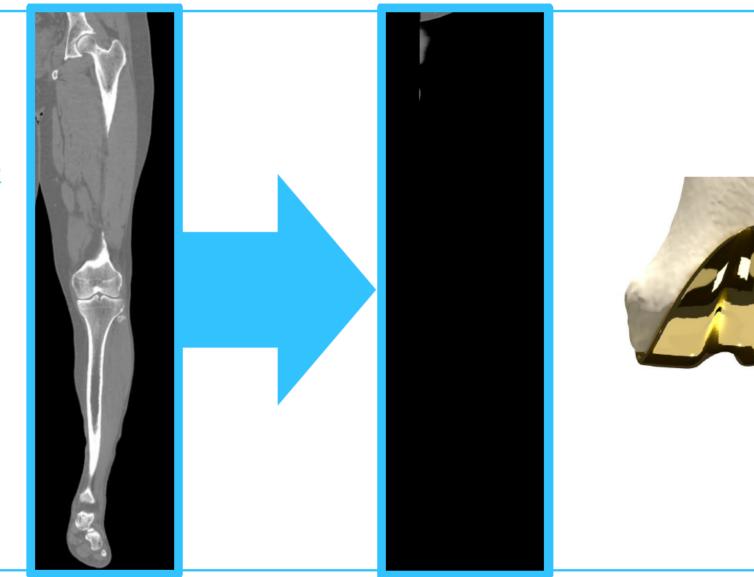

Copyright®, REJOINT and/or its affiliates. Note/ Fonti: All rights reserved.

REJOINT YourKnee

Personalised solution

Coating options

Design options



REJOINT YourKnee Total Knee Replacement (TKR)

Personalised approach to the TKR

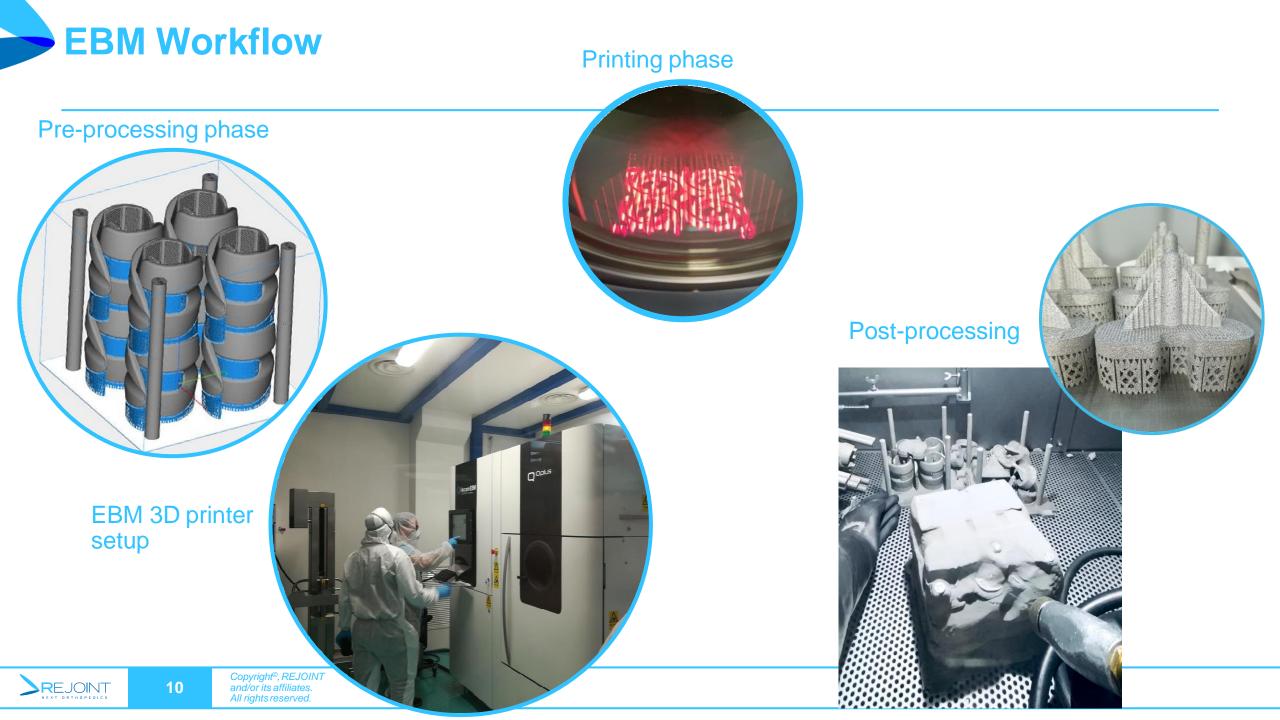
- Specific CT scan protocol
- 3D model reconstruction
- Evaluation of the best-fit size
- Native kinematics



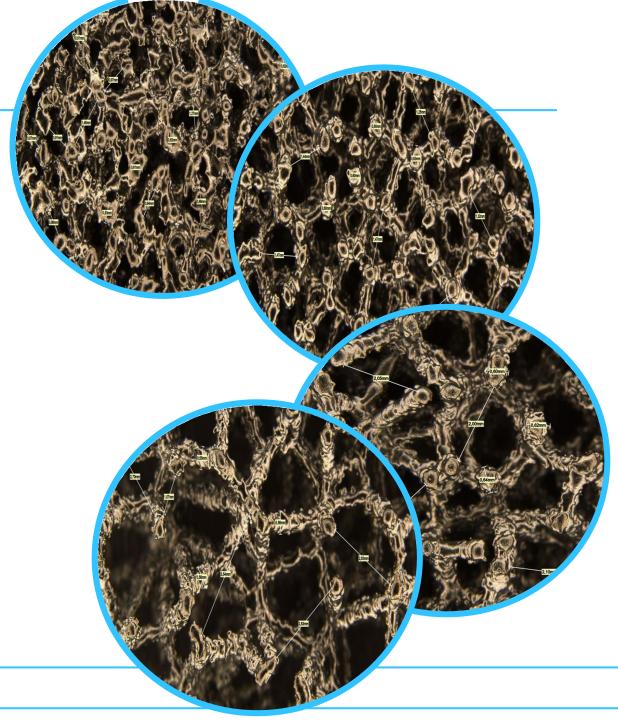
 REJOINT
 8
 Copyright®, REJOINT and/or its affiliates. All rights reserved.
 Note/ Fonti:

Best-fit Total Knee Replacement

REJOINT YourKnee TKR:

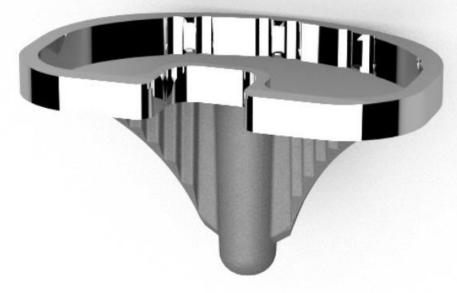

- 75000+ sizes
- Cemented and uncemented

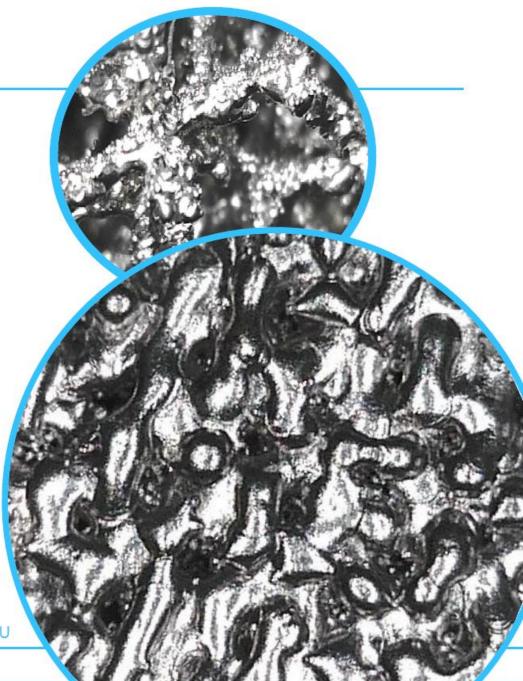
Additive Manufacturing



AM Product development

Additive Manufacturing advantages

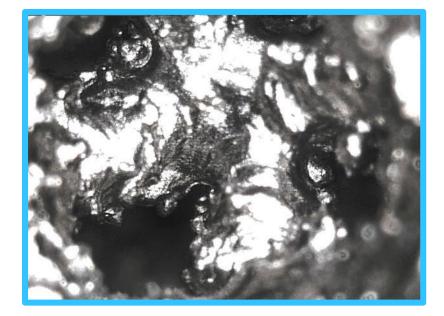

- Rapid prototyping Printing on demand
- Complex part design


Lattice structure for osteointegration

Uncemented tibial tray with lattice structure

All rights reserved

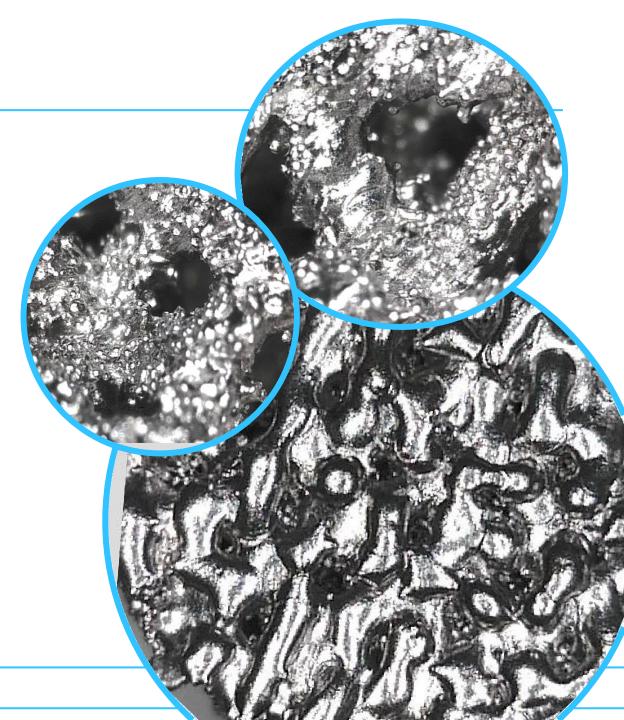
Product finalisation granted by 3DPanEU



12

AM Product development

Design and development of a medical device



Note/ Fonti:

Copyright[®], REJOINT and/or its affiliates. All rights reserved.

REJOINT

13

AM Product development

- Evaluation of different materials
- Design and process optimisation
- Product development in collaboration with experts
- Access to equipment for prototyping and/or feasibility studies

FRAUNHOFER PROJECT CENTER AT THE UNIVERSITY OF TWENTE

IPT

Thanks for your attention

Copyright[®], REJOINT and/or its affiliates. Note/ Fonti: All rights reserved.

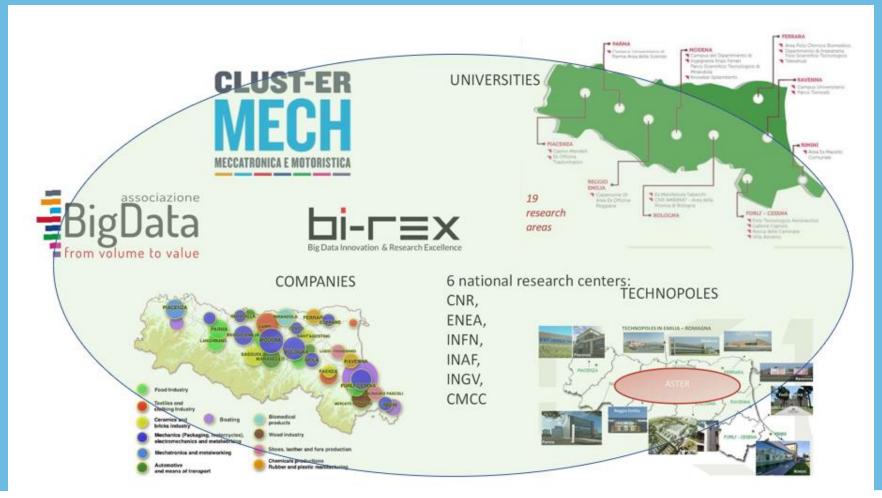
66

REJOINT

NEXT ORTHOPEDIC

Role of international facility centres in the European Additive Manufacturing industry

Luca Tomesani, University of Bologna



A rich environment for innovation

AM in relation to industrial innovation

One of the more important *Key Enabling technologies* for industrial innovation is Additive Manufacturing, for the immense level of flexibility it allows in product development:

- Digitization
- Almost any geometrical feature
- Easy to understand (in a consumer perspective)
- Customization
- Readyness

General AM considerations

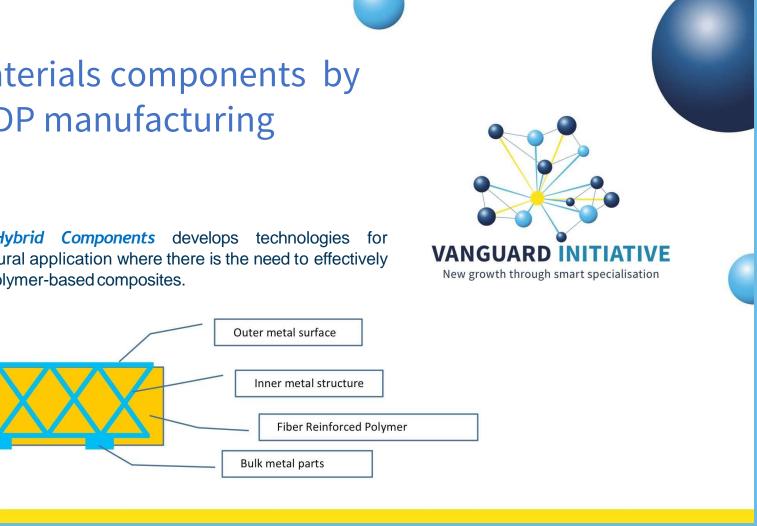
Let us be in the perspective of a research center looking for a AM provider for a new concept of a product, to be developed for a customer.

It seems simple, but it's quite the opposite.

- AM Technology selection (SLM, DED, DFM....)
- Material selection and availability
- Design issues (from conventional to generative)
- Manufacturability (samples, strategies, stresses and strains, simulation, optimization)
- Machine issues (volume, speed, cleaning for material substitution)
- Monitoring and Control (during process, on final product)
- Post processing
- Cost issues

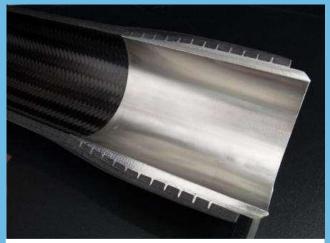
Progressive clustering of AM Capabilities

- Application sector: the AM provider knowledge is fundamentally driven by the industrial sectors targeted by the AM provider: production capability are clustering in regional areas around big OEM
- Beyond the AM process, many other facilities are often needed, which are also related to the industrial sectors of the industrial area, this further increasing clustering of knowledge


In Vanguard democases, the seek for new applications for the AM technology generates new links that require new «far» knowledge

Multi-materials components by hybrid 3DP manufacturing **Demo-case**

Multi-Material Hybrid Components develops technologies for lightweight structural application where there is the need to effectively join metals and polymer-based composites.

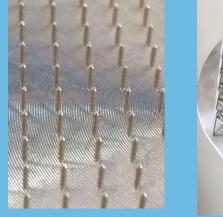


Multi-material hybrid components

In 2015 we were interested in the substitution of metal parts with composite materials, where there always is the need to integrate metal inserts inside the composite part

PINS at the interface between metal and composite could provide much more resistant joining

Multi-material hybrid components


We had to look for pin and lattice constructions, that could be infiltrated by composites

Thus we had to talk to:

- 3DP experts for pins and lattice manufacturing
- OEM companies for materials selection
- Composite experts for infiltration processing

In the field of 3DP, it is easy to find a printing facility, but it is much more difficult to find the machine working on the particular material you need.

Moreover, you may find very skilled people in the fields you need, whose knowledge is only partially related to the particular problem you have; and they are actually doing something else.

Pin construction by Additive manufacturing

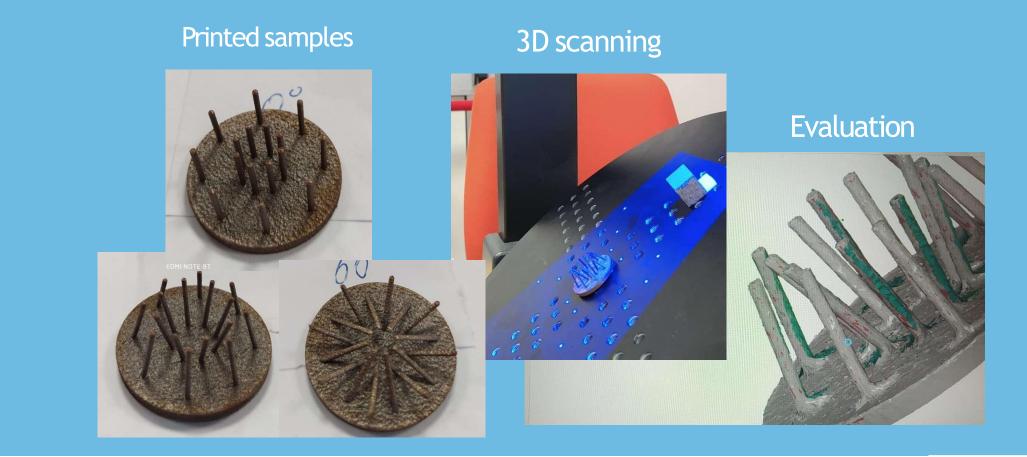
LATTICE STRUCTURE by AM

The need for expertise

There are two kinds of Experts

- 1. General expert
- 2. Closed expert

Question: can we build a lattice structure of pyramids 0.8 mm thick, 10 mm height, all around a cylinder of 50 mm diameter?


Closed expert: Yes, but the maximum inclination of the pyramid is 45°

In-house evaluation of process reliability

Conclusions and considerations

If we need to build up complex technological routes, combining different processes and materials, then the product development will proceed very slowly.

So we must consider the SPEED with which we innovation il produced.

The speed depends on the availability of

- Laboratory facilities and tools
- Closed experts in different fields
- A network of industrial facilities

Thus it is absolutely essential to have a vast (inter- regional) network of both:

- experts (RTOs) and
- facilities (Companies)

The Democase of the 3DP Pilot is the place where you create the network of experts and facilities that may be helpful for a particular task (i.e. to build a component made by to distinct materials)

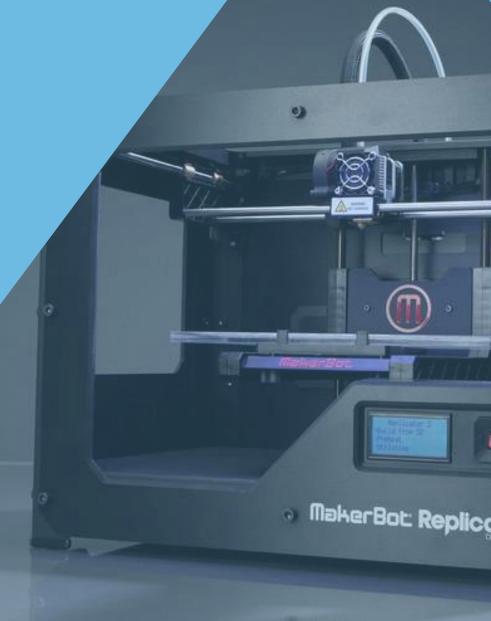
The Democase is also the place where you may draw the masterplan of your job, maybe with the help of an RTO near to the end user company

• MakerBot: Replice

0)

Next steps and closing remarks

- October 2021 marks the end of the 3DP PAN EU project
- Activities
 - Further development of the <u>www.3dppan.eu</u> platform
 - Wrap-up SME led industrial projects
 - Finalisation report



Thank you!

www.3dppan.eu

info@3dppan.eu

HINDI LODA -----